Ir al contenido principal

Hemingway, medio siglo

Ernest Hemingway en 1926
(Phot. Culver Pictures)

Se cumplen 50 años de la muerte de Ernest Hemingway. Como de él se ha dicho ya casi todo, prefiero no tratar de decir algo nuevo y en su lugar compartir las palabras con que Ignacio Gracia Noriega cierra su artículo a él dedicado, publicado en La Nueva España de 2 de julio:

"Escritor de inmenso talento y enormes dotes de síntesis y observación, tuvo y no tuvo: cuando tuvo, lo aprovechó al máximo, cuando no tuvo lo dilapidó. Quedan de él dos o tres libros bellísimos y algunos de los mejores cuentos jamás escritos."

Comentarios

Entradas populares

Escribir o no escribir

Por lo tanto, escribir que se querría escribir, ya es escribir. Escribir que no se puede escribir, también es escribir. Una manera como cualquier otra de llevar a cabo el vuelco que da pie a tantos propósitos audaces: hacer de lo periférico el centro, de lo accesorio lo esencial y de la arenilla la piedra angular. Sabía por lo tanto lo que tenía que hacer: dar una especie de golpe de mano mediante el cual había que conseguir otorgar una existencia ficticia a unos libros que no existen realmente y, gracias a ello, conferir una existencia real al libro que trata de esos libros ficticios. Un proceder en suma que se asemeja al que conduce al cogito cartesiano: en el momento preciso de dar fe de mi ineptitud para la escritura me descubría a mí mismo escritor, y de la ausencia de mis obras fallidas se nutriría éste. Hermoso ejemplo de esa estrategia del quien-pierde-gana, de esa proeza dialéctica que convierte una acumulación de fracasos en un camino hacia el éxito. ¡No será que no nos han…

Número diabólico (y no es el 666)

He aquí el número diabólico: 142.857. Consiste en lo siguiente: multiplicado por 2 y por 3 las mismas cifras se producen en los dos productos. Veamos:

                                                            x 2 = 285.714
                                                            x 3 = 428.571

Multiplicado por 4, 5, 6 se obtendrán siempre las mismas cifras y siempre en el mismo orden. Sólo cambia la cifra de partida. Existe una excepción multiplicado por 7. Veamos:

                                        x 7 = 999.999 (seis veces la cifra nueve).

Este número diabólico multiplicado por 8, nos da siete cifras en lugar de seis. Total: 1.142.856, es decir que, sumando la primera y la última cifra de este producto, obtendremos aún las seis cifras del número diabólico. Continuando las multiplicaciones por 9, 10, 11, 12 y 13 y sumando la primera y la última cifra del producto, viene de nuevo a nuestros ojos el número diabólico. Llegado a 14 (dos veces siete) se obtiene: 1.999.998, es de…