Ir al contenido principal

¿Fantasma?


"Cómo te hubiera gustado el cabo Norte, y los fiordos al sol de medianoche; cruzar los arrecifes de Barbados, donde el agua azul se vuelve verde; las Falkland, donde la galerna del sur hace que el mar se ponga blanco de espuma... ¡Cuántas cosas nos perdimos, Lucy! ¡Cuántas cosas nos perdimos...! Adiós, mi amor."

(El "fantasma" Rex Harrison a Gene Tierney en El fantasma y la señora Muir (1947), de Joseph L. Mankiewicz. Guión de Philip Dunne)

Comentarios

  1. Este comentario ha sido eliminado por un administrador del blog.

    ResponderEliminar
  2. ¡Qué película tan maravillosa! Una de mis preferidas, sin duda. Gracias por recordármela.

    ResponderEliminar
  3. Pues sí, creo que somos unos cuantos los que tenemos a esta película entre nuestras preferidas. Tiene misterio y poesía.

    ResponderEliminar
  4. Para mí también es una de las películas favoritas. Y la escena en la que el capitán Gregg, medio asomado al balcón para marcharse, dice esas palabras a una Lucy Muir dormida es de las que mejor recuerdo.

    ResponderEliminar
  5. ¡Y no nos olvidemos de la fantástica música de Bernard Herrmann!

    ResponderEliminar

Publicar un comentario

Entradas populares

Número diabólico (y no es el 666)

He aquí el número diabólico: 142.857. Consiste en lo siguiente: multiplicado por 2 y por 3 las mismas cifras se producen en los dos productos. Veamos:

                                                            x 2 = 285.714
                                                            x 3 = 428.571

Multiplicado por 4, 5, 6 se obtendrán siempre las mismas cifras y siempre en el mismo orden. Sólo cambia la cifra de partida. Existe una excepción multiplicado por 7. Veamos:

                                        x 7 = 999.999 (seis veces la cifra nueve).

Este número diabólico multiplicado por 8, nos da siete cifras en lugar de seis. Total: 1.142.856, es decir que, sumando la primera y la última cifra de este producto, obtendremos aún las seis cifras del número diabólico. Continuando las multiplicaciones por 9, 10, 11, 12 y 13 y sumando la primera y la última cifra del producto, viene de nuevo a nuestros ojos el número diabólico. Llegado a 14 (dos veces siete) se obtiene: 1.999.998, es de…

Escribir o no escribir

Por lo tanto, escribir que se querría escribir, ya es escribir. Escribir que no se puede escribir, también es escribir. Una manera como cualquier otra de llevar a cabo el vuelco que da pie a tantos propósitos audaces: hacer de lo periférico el centro, de lo accesorio lo esencial y de la arenilla la piedra angular. Sabía por lo tanto lo que tenía que hacer: dar una especie de golpe de mano mediante el cual había que conseguir otorgar una existencia ficticia a unos libros que no existen realmente y, gracias a ello, conferir una existencia real al libro que trata de esos libros ficticios. Un proceder en suma que se asemeja al que conduce al cogito cartesiano: en el momento preciso de dar fe de mi ineptitud para la escritura me descubría a mí mismo escritor, y de la ausencia de mis obras fallidas se nutriría éste. Hermoso ejemplo de esa estrategia del quien-pierde-gana, de esa proeza dialéctica que convierte una acumulación de fracasos en un camino hacia el éxito. ¡No será que no nos han…